
1

Hyper-Real-Time Ice Simulation and Modeling
Using GPGPU

Shadi Alawneh, Young Professional Member, IEEE, Roelof Dragt,
Dennis Peters, Senior Member, IEEE, Claude Daley, and Stephen Bruneau

Abstract—This paper describes the design of an efficient parallel implementation of an ice simulator that simulates the behaviour
of a ship operating in pack ice. The main idea of the method is to treat ice as a set of discrete objects with very simple properties,
and to model the system mechanics mainly as a set of discrete contact and failure events. In this way it becomes possible to
parallelize the problem, so that a very large number of ice floes can be modeled. This approach is called the Ice Event Mechanics
Modeling (IEMM) method which builds a system solution from a large set of discrete events occurring between a large set of
discrete objects. The simulator is developed using the NVIDIA Compute Unified Device Architecture (CUDA). This paper also
describes the execution of experiments to evaluate the performance of the simulator and to validate the numerical modeling of
ship operations in pack ice. Our results show speed up of 11 times, reducing simulation time for a large ice field (9801 floes) from
over 2 hours to about 12 minutes.

Index Terms—GPGPU, CUDA, Ice Simulation, Ice - Ship Interaction, Experimental Validation.

F

1 INTRODUCTION

THE Sustainable Technology for Polar Ships and
Structures project (referred to as STePS2)1 sup-

ports sustainable development of polar regions by
developing direct design tools for polar ships and
offshore structures. Direct design improves on tra-
ditional design methods by calculating loads and
responses against defined performance criteria. The
deliverables of the project include a numerical model
which accurately handles collision scenarios between
ice and steel structures. The research described in this
paper is to use General Purpose GPU computing, or
GPGPU, to implement some of the numerical models
in this project.

Sea ice is a complex natural material that can de-
stroy ships and offshore structures. The idea described
here allows the practical and rapid determination of
ship-ice, ice-ice and ice-structure interaction forces
and effects in a sophisticated ice regime. The term
rapid is meant to mean at least real-time with the
aim to be hyper-real-time. The term practical implies
that the method can be developed using software
and hardware that is reasonably affordable by typi-
cal computer users. The method is designed to take
advantage of massively parallel computations that

• S. Alawneh, D. Peters, C. Daley and S. Bruneau are with the Faculty
of Engineering, Memorial University of Newfoundland, St. John’s, NL,
A1B 3X5.
E-mail:{shadi.alawneh,dpeters,cdaley,sbruneau}@mun.ca

• R. Dragt is with Delft University of Technology.
E-mail: sanderdragt@gmail.com

This paper was presented in part at the 14th IEEE International Confer-
ence on High Performance Computing and Communications, 2012

1. http://www.engr.mun.ca/steps2/index.php

are possible using GPU (Graphical Processing Unit)
hardware. The main idea of the method is to treat ice
as a set of discrete objects with very simple properties,
and to model the system mechanics mainly as a set
of discrete contact and failure events. In this way it
becomes possible to parallelize the problem, so that a
very large number of ice floes can be modeled. This
approach is called the Ice Event Mechanics Modeling
(IEMM) methods, which builds a system solution
from a large set of discrete events occurring between
a large set of discrete objects. The discrete events
among the discrete objects are described with sim-
ple event equations (event solutions). Unlike existing
methods such as finite element [1] discrete element
[2] and Particle in Cell [3] methods are built on the
ideas of continuum mechanics. The IEMM approach
is based on the premise that aggregate behavior is
only weakly dependent on the continuum processes
inside ice events, but very strongly dependent on the
sequence of events. Each discrete collision and failure
(fracture) that occurs creates the initial conditions for
the subsequent event. The collisions and fractures
occur so fast (relative to the time between events) that
they can be considered to be instant, which is to say
that they are events rather than processes.

With the relatively recent development of GPUs
it has become possible to employ massively parallel
computation on the level of a desktop computer.
Massively parallel computation coupled with discrete
event solutions for ice-ice and ice-structure interac-
tions are combined to create a method to permit the
rapid practical simulation of realistic ice behavior. The
approach permits the development of useful solutions
to a number of practical problems that have been



2

plaguing the designers of arctic offshore constructions
(ships and structures) for many years. The problem
components are as follows:

1) Discreteness and Fidelity: Almost any photo-
graph of a ship or a structure in ice, or a
photo of the ice itself will indicate the ice is not
smooth. The ice is actually a very large number
of discrete, nearly rigid objects, all interacting
with each other and any structure that we place
in the sea. Standard approaches used to model
this situation fail to capture in any realistic
way the discreteness of the situation. Either the
models focus all their attention in single events
(single collisions) or they treat multiple events
by smoothing the problem into some form of
continuum. This leads to a general lack of con-
fidence in models, and an over reliance on the
scarce, expensive and inadequate full scale data.
There is a great need for models that can sup-
port engineering design and assessment of arctic
structures, models that will have features that
are obviously and demonstrably comparable to
the discrete features that are apparent in real sea
ice.

2) Training: To allow for improved training of ves-
sel operators in realistic ice conditions, we must
have ship ice interaction calculations performed
and displayed in real time. This is a significant
challenge, due to the complexity of ice and the
nature of the mechanics of solids. With most
vehicles (cars, planes, ships in water), the vehicle
is passing through or over a relatively smooth
continuum. The environment is not altered by
the vehicle. In the case of ice, the vessel must
break the ice, and the ice will remain broken.
(Planes do not break the air, cars do not break
the road). Modeling ice loads using standard
approaches (finite element modeling etc) takes
so long that real-time simulation is not feasible.
The IEMM approach will enable a high degree
of realism in training situations.

3) Long Range Planning and Design: Arctic re-
source developments will require many novel
ships and structures. In the past it would have
been normal practice to learn from novel designs
through a system of trial and error (success and
failure). Increasingly there is a need to lower
risks and plan against failure in advance. As
such there is a need to conduct the trial and error
exercises through long term high fidelity simula-
tions, to the greatest practical extent. The IEMM
concept is aimed at this challenge. By enabling
hyper-real-time simulation with high physical
fidelity, it will be possible to conduct design-life-
length simulations, with treatment of evolving
ice conditions, realistic operations and natural
variability. The concept will enable designers,

regulators and stakeholders in offshore projects
to gain a much greater level of confidence in
the safety of the projects and the key issues that
must be addressed.

This paper presents an efficient parallel imple-
mentation of such a simulator developed using
the NVIDIA Compute Unified Device Architecture
(CUDA). This paper also presents the results of the
experiments to evaluate the performance of the al-
gorithms developed in this work and to validate the
numerical models of ship operations in pack ice.

1.1 Ice Floe Simulation

The particular problem that we are investigating is
to simulate the behaviour of floating ice floes (pack
ice, see Figure 1) as they move under the influence
of currents and wind and interact with land, ships
and other structures, while possibly breaking up in
the process. In a two-dimensional model, we model
the floes as convex polygons and perform a discrete
time simulation of the behaviour of these objects. The
goal of this work is to be able to simulate behaviour
of ice fields sufficiently quickly to allow the results to
be used for planning ice management activities, and
as such it is necessary to achieve a simulation many
times faster than real-time simulation.

Fig. 1. Ice floes.[4]

This project is structured in two components, the Ice
Simulation Engine, which is the focus of this paper, and
the Ice Simulation Viewer, which is being developed to
display the data produced by the simulation engine.
The simulation viewer displays frames of ice field
data sequentially to provide its user with a video of
a simulation of the field. It is currently used by the
STePS2 software team to help determine the validity
of the data calculated by the simulation and will even-
tually be used to present results to project partners.
The Ice Simulation Viewer is being developed in C++
using the Qt [5] user interface framework. Figure 2
shows a screenshot of the main interface of the Ice
Simulation Viewer with an ice field loaded. For more
details about the Ice Simulation Viewer see [6].



3

Fig. 2. Ice simulation viewer

This paper handles the 2D simulation of pack ice
and consider driving forces (e.g., current, wind) and
models some 3D aspects but didn’t consider motion
in 3D. The goal is to achieve a simulation that is
fast enough to be practically used for planning ice
management activities in realistic size ice fields. The
3D version of the simulation will be left for future
work.

1.2 Novel Contributions
Through our literature review we were not able to find
any other published work in which GPGPU is used to
achieve hyper-real-time simulations of ice. Therefore,
this paper introduces a new GPGPU approach that
can be used to simulate the behaviour of a ship in
pack ice. Using the new GPGPU approach, hyper-real-
time simulations can be achieved which will allow
the results to be used in planning ice management
activities. This feature has great practical significance
for design, assessment and training applications. This
approach will be described in detail in Section 5.

1.3 Paper Outline
The remainder of this paper is organized as follows.
Section 2 presents the related work. Section 3 de-
scribes the mechanics of the GPGPU model. Section
4 describes a brief overview of CUDA and it also
describes the collision detection algorithm and a high
level algorithm of the simulator. Section 5 describes
the experiments to evaluate the performance of algo-
rithms and it also discusses the different approaches
for implementing the ice simulator. Section 6 de-
scribes the physical model experiments to validate the
GPGPU model. Sections 7 and 8 concludes with the
ongoing research and future plans.

2 RELATED WORK

The work reported in this paper is an extension of
the recent work of [7], [8]. The experiments in the
current work shows the performance for a larger ice
fields. The current work introduces a new approach to
generate the list of neighbors for each ice floe, which

results in better performance. This approach uses a
variable radius specific to each floe pair. The current
work also discusses the performance of alternative
collision detection approach (uniform grid) and de-
scribes the execution of the experiments to validate
the numerical modeling of ship operations in pack
ice. The validation experiments has been described in
a non-refereed local workshop [9].

A complete details about the Ice Simulation Viewer,
which is being developed to display the data pro-
duced by the simulation engine, has been described
in a non-refereed local workshop [6].

The event-mechanics approach to assess vessel per-
formance in pack ice has been introduced in [10],
[11]. In [10], a set of simulation domains, each con-
taining hundreds of discrete and interacting ice floes
is modeled. A simple vessel is modeled as it navi-
gates through the domains. Each ship-ice collision is
modeled, as is every ice-ice contact. Time histories
of resistance, speed and position are presented along
with the parametric sensitivities. The results are com-
pared to published data from analytical, numerical
and scale model tests. In [11], the use of a GPU-Event-
Mechanics (GEM) simulation to assess local ice loads
on a vessel operating in pack ice has been explored.

The interaction between a ship and ice is a complex
process. The most important factors that this process
depends on are: the ice conditions, the hull geometry
and the relative velocity between the ship and the
ice. The main idea of ice breaking was explained by
Enkvist et al [12]. Kotras et al. [13] and Valanto [14]
described an overview of ship-level ice interaction
where they divided the interaction process into sev-
eral phases: breaking, rotating, sliding and clearing.
This work focuses on the 2D clearing in open pack
ice and the breaking.

A good understanding of the processes of ship-
ice interaction is essential for developing reliable
theoretical models. These models help optimize the
design and operation of ships in Arctic waters. Several
performance models exist, including semi-analytical
and purely empirical variants, e.g. [15], [16], [17].
These models can be used in the early design stage for
an icebreaker to choose a hull form and a propulsion
system that give the best possible performance in
terms of global resistance, available thrust, maximum
speed and fuel consumption. As well as they can be
used to help ship crew optimize their route.

Lubbad et al. [18] described a numerical model to
simulate the process of ship-ice interaction in real-
time. PhysX, a real-time physics engine middleware
SDK, is used to solve the equations of rigid body
motions for all ice floes in the calculation domain.
They have validated their results of the simulator
against experimental data from model-scale and full-
scale tests. The validation tests showed a adequate
agreement between the model calculations and ex-
perimental measurements. The goal of our work is to



4

be able to simulate behaviour of ice fields sufficiently
quickly by using GPGPU to allow the results to be
used for planning ice management activities, and so
it is necessary to achieve many times faster than real-
time simulation. The results of that work suggest that
the level of hyper-real-time performance that we hope
to achieve will not result from PhysX, so it is not used
in this project.

There are several researchers who have developed
particle system simulation on GPUs. Kipfer et al. [19]
described an approach for simulating particle systems
on the GPU including inter-particle collisions by using
the GPU to quickly re-order the particles to determine
potential colliding pairs. Kolb et al. [20] described a
GPU particle system simulator that provides a sup-
port for accurate collisions of particles with scene
geometry by using GPU depth comparisons to detect
penetration. A simple GPU particle system example
is provided in the NVIDIA SDK [21]. They described
how to implement a particle system in CUDA, in-
cluding particle collisions using a uniform grid data
structure which will be described in section 5.3.1. In
this work, we have tried to use the uniform grid data
structure to handle collisions but we didn’t get better
performance than the current approach that we are
using.

3 ICE BEHAVIOUR

Each ice-ice collision event within the pack is treated
using a method that can be traced to Popov et. al
[22]. The method was updated to reflect pressure-
area effects [23], and used for a variety of ship-ice
interaction scenarios [24]. When two bodies collide
in a 2D world, each body has 3 degrees of freedom,
as well as two mass parameters, and a shape (see
Figure 3). The large number of parameters makes
the collision problem potentially very difficult. The
problem can be substantially simplified by making a
few simplifying assumptions and viewing the prob-
lem from the perspective of the collision point. It is
assumed that the collision will be of short duration,
and that the force will act, in the frictionless case,
normal to the line of contact (see Figure 4). With
these assumptions the problem can be reduced to an
equivalent one dimensional collision. The equivalent
velocity is the closing velocity at the point of contact
along the collision normal.

Fig. 3. Idealization of 2D collision between two finite
bodies. [11]

Fig. 4. Assumption concerning the location and direc-
tion of impact forces. [11]

The mass reduction factor (R) for one body subject
to a collision along a normal is:

R = l2 +m2 +
η2

r2x
(1)

Where l and m are direction cosines of the inward
normal vector, η is the moment arm of the normal
vector about the centroid and r2x is the square of
the radius of gyration of the body (see Figure 3).
Each body in a two body collision has a unique mass
reduction factor. The above mass reduction factor
represents the simplest case for 2D without added
mass or friction. Enhancements to the formula have
been developed to include effects of hydrodynamic
added mass and friction and 3D effects (see [23]).

The program assumes that all collisions are inelas-
tic, where the ice crushing energy absorbs all the
effective kinetic energy. A collision is detected in one
time step when the two bodies are found to overlap.
The effective masses and normal velocities are de-
termined for each colliding body for their respective
points of impact. The direction of relative motion is
determined to allow the determination of the friction
direction. The impulse that will eliminate the net
normal velocity is then found. That impulse is applied
to each body in an equal and opposite sense. The
result is that the normal velocity at that point is zero
in the next time step. This does not mean that all
motion is stopped. Ice floes tend to rotate around
the collision point and slide away. This approach
does contain some idealizations and approximations,
but does appear to be stable and produce reasonable
results.

The forces are found by using the “process pressure-
area” relationship for ice, the ice edge shape, hull
angles, and effective mass of each collision (see [23]).
It should be noted that two distinct versions of this
approach are used in the Ice-Event-Mechanics simula-
tion. The kinematics of the vessel and ice are modeled
in 2D, so one implementation of the model derives the
2D forces. Those algorithms assume that the vessel
is wall sided, and do not permit ice to move under
the hull. Another algorithm takes the hull form into
account and determines impact forces using the 3D



5

mechanics and shapes. These 3D forces are logged for
later analysis. For the above reasons, the simulation
presented is termed a 2.5D simulation. It is for this
reason that the simulations are limited to open pack.
High ice concentrations and pressure in the ice pack
would create conditions that would invalidate the
assumptions. Future model development is planned
to remove these restrictions.

4 METHODOLOGY

4.1 CUDA Overview

CUDA is a comprehensive software and hardware
architecture for GPGPU that was developed and re-
leased by Nvidia in 2007. This development for-
warded Nvidia’s move toward GPGPU and High-
Performance Computing (HPC), combining huge pro-
grammability, performance, and ease of use. A major
design goal of CUDA is to support heterogeneous
computations in a sense that serial parts of an ap-
plication are executed on the CPU and parallel parts
on the GPU [25].

Based on [26], the CUDA programming model pro-
vides a helpful way to solve the problems by splitting
it into two steps: First dividing the problem into
coarse independent sub-problems (grids) and then
into finer sub-tasks that can be executed cooperatively
(thread blocks). The programmer writes a serial C for
CUDA program which invokes parallel kernels (func-
tions written in C). The kernel is usually executed
as a grid of thread blocks. In each block the threads
work together through barrier synchronization, and
they have access to a shared memory that is only
visible to the block. Each thread in a block has a
different thread ID. Each grid consists of independent
blocks. Each block in a grid has a different block ID.
Grids can be executed either independently or depen-
dently. Independent grids can be executed in parallel
provided that we have a hardware that supports
executing concurrent grids. Dependent grids can only
be executed sequentially. There is an implicit barrier
that ensures that all blocks of a previous grid have
finished before any block of the new grid is started.

4.2 Collision Detection

Since this work uses a discrete time simulation, for
each time step the collisions are detected by searching
for regions of overlap between ice floes, compute the
momentum that would result from such a collision
and adjust the velocity of each floe accordingly. The
problem of detecting collisions between ice floes is
broken down into two parts: determining if the floes
are overlapping, and computing the region of overlap.

To determine whether or not two convex polygons
are intersecting we have used the method of separat-
ing axes [27]. This method determines whether or not
two convex objects are intersecting. This method is

a fast generic algorithm that can remove the need to
have collision detection code for each type pair (any
type of convex polygons: 3-sided, 4-sided, 5-sided,
etc...) thereby reducing code and maintenance.

In this method the test for nonintersection of two
convex objects is simply stated: If there exists a line
for which the intervals of projection (the lowest and
highest values of the polygon projection on the line)
of the two objects onto that line do not intersect, then
the objects do not intersect. Such a line is called a
separating line or, more commonly, a separating axis.

For a pair of convex polygons in 2D, only a finite
set of direction vectors needs to be considered for
separation tests: the normal vectors to the edges of
the polygons. The left picture in Fig. 5 shows two
nonintersecting polygons that are separated along a
direction determined by the normal to an edge of one
polygon. The right picture shows two polygons that
intersect (there are no separating directions).

Fig. 5. Nonintersecting convex polygons (left). Inter-
secting convex polygons (right).[27]

Once it is determined that two polygons are over-
lapping, the region of overlap is identified to compute
the resultant momentum. Finding the intersection of
two arbitrary polygons of n and m vertices can have
quadratic complexity, Ω(nm). But the intersection of
two convex polygons has only linear complexity,
O(n + m). Intersection of convex polygons is a key
component of a number of algorithms, including de-
termining whether two sets of points are separable by
a line. The first linear algorithm was found by Shamos
[28], and since then a variety of different algorithms
have been developed, all achieving O(n + m) time
complexity. This work uses the algorithm that was
developed by O’Rourke, Chien, Olson & Naddor [29].

The basic idea of the algorithm is as illustrated
in Algorithm 1[29]. Here, the boundaries of the two
polygons P and Q are oriented counterclockwise, and
let A and B be directed edges on each. The algorithm
has A and B chasing one another. The edges A and
B are shown as vectors.

4.3 High Level Algorithm of The Simulator
Fig. 6 shows the high-level flow of the ice simulator.
At the beginning the CPU reads the ice floe data
(position and velocity) and initializes the simulation
parameters. The initial data is transferred from the
CPU to the GPU. Then, the GPU takes over the main



6

Algorithm 1 :Intersection of convex polygons
. Assume that P and Q overlap

Choose A and B arbitrarily.
repeat

if A intersects B then
The point of intersection is a vertex.
One endpoint of each of A and B is a vertex.

end if
Advance either A or B, depending on geometric

conditions.
until both A and B cycle their polygons
if no intersections were found then

One polygon must be entirely within the other.
end if

work of the simulation. First, the “create neighbours
list” kernel is launched to find the list of polygons
that might overlap with each ice floe. Then, the “test
intersection and find collision response” kernel is
launched to determine the list of ice floes that have
overlap with each ice floe and to calculate the collision
response for each ice floe. Last, the “update” kernel
is launched to update the position and velocity for
all ice floes. After that, the ice floe data is transferred
back to the CPU. This process is repeated until the
simulation is completed.

Fig. 6. Ice simulator flowchart.

5 ALGORITHMS DEVELOPMENT

This section describes the experiments to evaluate the
performance of algorithms. It also discusses the dif-
ferent approaches for implementing the ice simulator.

In this work, Intel(R) Xeon(R) CPU E5520 @2.27GHz
and a GPU Tesla C2050 card have been used. This card
has 448 processor cores, 1.15 GHz processor core clock
and 144 GB/sec memory bandwidth.

5.1 Ice Simulator Implementation

As the implementation have been developed. Three
different general structures of the GPU solution have
been progressed through. They are explained below
and the relative performance of these is illustrated in
Figure 7.

In the first implementation, two CUDA kernels
were used: The first kernel, executed using one thread
per polygon, finds the list of all pair-wise collisions
by determining which pairs of polygons (ice floes)
are overlapping. The second kernel, executed using
one thread per overlapping polygon pair, computes
the collision response (momentum) for each pair. This
approach resulted in speed-up of up to 10 times as
compared with the CPU implementation, and didn’t
achieve real-time results in all cases and therefore is
insufficient.

In the second implementation the two kernels were
merged in one kernel. One thread for each polygon to
check the collision with other polygons and calculate
the response. This approach was slightly faster than
the first, but still insufficient for the general case.

In the third implementation we took advantage of
the fact that polygons that are widely separated are
unlikely to overlap any time soon, and so we could
dramatically reduced the number of polygons to be
checked for collision by eliminating those that are
beyond some distance away. To do this we added
another kernel that finds the list of neighbours for
each polygon that are within the region where they
might overlap with it soon. Therefore, instead of
checking the collisions with every other object we just
checked with those in the list of neighbours. The list is
re-created periodically, but not at every time step, so
that the total number of computations is significantly
reduced. This approach is significantly faster than
the other two approaches as we see in Figure 7 and
achieves substantially better than real-time simulation
for small ice fields.

Fig. 7. Computation time per iteration of the three GPU
approaches (456 floes).



7

5.2 Performance Evaluation

We have implemented a serial and parallel version of
the simulator and tested both versions on a large ice
fields and at different (real-time) durations. The ice
field has 9801 ice floes. The simulation time step (∆t)
that we have used in the simulations is 0.1s. We have
used 0.1s to maintain accuracy in the ice mechanics.
We have tried two different approaches to generate
the list of neighbors for each ice floe: In the first
approach, we have used a fixed radius of 70m around
each floe in the entire ice field. This radius is selected
based on the maximum velocity that we could have in
the ice field. In the second approach, we find the list
of neighbours using a variable radius specific to each
floe pair. Finally, we have done another experiment
on ice fields of different sizes to show the scalability
of the parallel implementation.

5.2.1 Results

The CPU computation time per iteration to simulate
the behaviour of the ship in a large ice field, which
has 9801 ice floes, for all five different durations
(4000,5000,6000,7000,8000), is about 1 second but the
GPU time is about 0.09 second. Therefore, the speed
up of using the GPU approach is about 11 times.
Moreover, the simulation is hyper-real-time since the
computation time per iteration is less than the simu-
lation time step (∆t = 0.1s).

Figure 8 shows the CPU and GPU computation time
per iteration to simulate the behaviour of the ship in
different ice fields, for the same number of iterations
(1850). As we see in Figure 8 we can tell that the
GPU approach gets faster than the CPU approach
as the number of ice floes increases. Moreover, the
simulation is hyper-real-time since the computation
time per iteration is less than the simulation time step
(∆t = 0.1s).

Fig. 8. Computation time per iteration for different ice
fields.

Figure 9 shows the speed up of the GPU approach
using ice fields of different sizes. As we see in Figure 9
we can tell that the speed up increases as the number
of ice floes increases.

Fig. 9. GPU approach speed up for different ice fields.

5.3 Alternative Collision Detection Approach

This section describes alternative collision detection
approach that we have tried. It also discusses the
performance evaluation of the approach.

5.3.1 Uniform Grid Data Structure

In the uniform grid approach [30], a grid subdivides
the simulation space into a grid of uniformly sized
cells. For the sake of simplicity, we have used a grid
where the cell size is the same as the size of the largest
ice floe (double its radius). Also, the grid that we have
used is called a ”loose” grid, where each ice floe is
assigned to only one grid cell based on it is centroid.
Since each ice floe can potentially overlap several grid
cells, this means that in the collision processing we
must also examine the ice floes in the neighboring
cells (9 cells in total in 2D grid) to see if they are
touching the ice floe.

The grid is built using sorting. The algorithm to
build the grid consists of several kernels. The first one
”calcHash” calculates a hash value for each ice floe
based on its cell id. We have used the linear cell id
(the address calculation is always bounded by the grid
size which is a power of two) as the hash. The kernel
stores the results to the ”particleHash” array in global
memory as a pair of unsigned integers (uint2) pair
(cell hash, ice floe id).

We then sort the ice floes based on their hash
values. The sorting is performed using the fast radix
sort provided by the CUDPP library, which uses the
algorithm described in [31]. This creates a list of ice
floe ids in cell order. In order for this sorted list to be
useful, we need to be able to find the start of any given
cell in the sorted list. This is done by running another
kernel ”findCellStart”, which uses one thread per ice
floe and compares the cell index of the current ice
floe with the cell index of the previous ice floe in the
sorted list. If the index is different, this indicates the
start of a new cell, and the start address is written to
another array using a scattered write. Also, the index
of the end of each cell is found in a similar way.



8

5.3.1.1 Results: Figure 10 shows the GPU com-
putation time per iteration to simulate the behaviour
of the ship in the first ice field which has 456 ice
floes for all five different durations. Variable Radius
is the computation time using the list of neighbours
approach that we have discussed in section 5.2 and
Uniform Grid is the computation time using the uni-
form grid approach.

Fig. 10. Computation time per iteration using the
uniform grid and list of neighbours approaches (456
floes).

As we see in Figure 10 we can tell that the uniform
grid approach is slower than the list of neighbours ap-
proach. Therefore, we have used the list of neighbours
approach in our implementation.

6 MODEL VALIDATION
In the model validation we modeled the ship and
the ice floes as polypropylene pieces. Then, we did a
physical experiments in the tank. After that we com-
pared the velocities and the positions of some of the
ice floes and the ship that obtained from the physical
experiments with the velocities and the positions of
the same ice floes and the ship that obtained from the
numerical simulation. In the physical experiments we
didn’t model the contacts. Also, if there is no ice that
means there will be no contact. In the model valida-
tion we just validated the positions and velocities of
the ship and some of the ice floes. We didn’t validate
the forces.

6.1 Modelling the GPGPU Model
The GPGPU model is validated using physical model
experiments, which are designed to approach the
boundary conditions of the GPGPU model as closely
as possible. Most important are the degrees of free-
dom for the floes and the vessel: the floes have three
degrees of freedom, movement in x-and y-direction
and rotation around the z-axis. This means that rafting
and rubbling are excluded. The ship is restricted
to one degree of freedom, movement in x-direction
(forward movement). Figure 11 shows the 2D concept
and the axis used.

X
Y

Z

-��7
6

Fig. 11. Schematic view of the 2D concept used in the
model.

6.2 Physical Model Experiments

The main goal, as described above is divided into five
subgoals:

A To develop a repeatable method of creating ship-
floe and floe-floe collisions in the lab.

B To develop a reliable method to register and
measure positions and rotations over a given
period of time.

C To develop a method to analyze and quantify
the results.

D To develop a method to compare the results to
a numerical simulation.

E Validate the numerical model and make recom-
mendations.

6.2.1 Method of creating ship-floe and floe-floe colli-
sions
The experiments are carried out in a transparent
acrylic tank, located in the marine laboratory of
Memorial University of Newfoundland’s Engineering
and Applied Sciences Faculty. The tank measures 7.9
meter in length, 1.47 meters wide and 0.97 meters
deep and the walls are constructed out of acrylic glass
to enable an all-round view, as is shown in Figure 12.

Fig. 12. Drawing of the acrylic tank, dimensions are in
meters.

The ship and the floes are constructed out of
polypropylene, with a density of 905 kg/m3, which
is the density of ice. Polypropylene is chosen because
it has the right density and it doesn’t melt. These
properties are close to the boundary conditions of the
GPGPU model, which assumes rigid body behaviour
and completely elastic collisions. Finally, the material
can be reused many times, which makes it an ideal
material for tank testing.



9

The floes are 12.7 mm thick (1/2 inches) and ran-
domly shaped into convex polygons with three to
six sides. The vessel itself is made out of a 50.8 mm
thick (2 inches) sheet of polypropylene, has a overall
length of 0.91 m (36 inches) and a beam of 0.178 m (7
inches). A small recess was machined into the vessel
to reduce the weight and increase the freeboard. The
floes and the vessel do not change shape over the
depth, because of the 2D restriction. Figure 13 shows
the vessel with its main dimensions.

The vessel is controlled using an overhead carriage,
which is connected to the beam of the vessel using an
aluminum rod. The carriage is suspended and moved
by a wire loop, mounted over the centerline of the
tank. The wire is driven by a variable speed motor,
which is controlled by a DC controller (see Figure
14). Unfortunately, the overhead carriage is not stiff
enough to restrict all the vessel’s movements in sway
and yaw direction. Therefore, the criteria set for the
experiment (the vessel only moves in x-direction) is
not entirely met. However, the error introduced is
relatively small, as is shown in subsection 6.2.4.

6.2.2 Method to register and measure positions and
rotations over a given period of time

Movements of vessel and the floes in the tank are
recorded on camera during the entire experiment.
This camera is located under the tank and looks up
through the acrylic bottom of the tank. This way,
access to the camera is easier, but the camera’s view
is limited to one segment of the tank, due to the
structural support of the acrylic tank. This limited the
maximum dimensions of the ice field.

Also, due to the camera placement under the tank,
some refraction takes place when the light travels
from the water, through the acrylic glass to the air.
The theoretical refraction is calculated and the results

Fig. 13. Design drawing of the vessel used in the
experiments.

Fig. 14. Schematic experiment layout, showing the
vessel, some floes and the towing carriage above the
tank.

showed that due to this specific combination of water,
acrylic and air only a neglectable refraction occurs.

The floes and ship are outfitted with targets, so they
can be tracked using image processing software. A
“bow tie” target is designed which differs a little from
the typical cross-pattern, as is seen in Figure 15. This
design is chosen because it presents a single large
coloured surface (a cross-pattern design has two),
which makes it easier to find the target and remove
computational noise. Also, the design makes it easier
to recognize the direction of the floe and thus calculate
the rotational velocity during the experiment.

(a) (b)

Fig. 15. Cross design (a) and Bow Tie design (b).

6.2.3 Method to analyze and quantify the results
The method used to analyze the data filters all but the
given colour range from the frames. The exact location
and orientation of the target is then calculated and
saved for each frame in the video. The velocities are
calculated by comparing the change in target position
between frames, with a frame rate of 30 frames per
second.

The camera footage, Figure 16 shows one frame, is
processed using Matlab. First of all, the user interface
enables the user to crop and rotate the video. By doing
this, all the parts of the image outside of the tank
boundaries are removed and the sides and top of the
image can be used as a reference frame to determine
the exact location of the floes and the vessel. Also, the
user is able to determine which part of the video is
processed and which colours are tracked.

Fig. 16. Bottom-up view of floes and a ship, outfitted
with “bow tie” targets.

The processing starts with separating the colour
information (rgb or red, green and blue) into separate
matrices. Next, a colour threshold is used to find the



10

colour targets. This threshold sets the value of the
pixel to 255 if the colour is within the threshold and
to 0 if it is not. Combining the information of all
three images (red, green and blue) gives Figure 17(a).
The white areas are within (all) the thresholds, the
coloured images are within one or two rgb values
and the black areas are outside the thresholds. This
colourful image is used to calibrate the threshold, as
the colours show which part of the image has to be
altered. Finally the image is converted into a binary
image, Figure 17(b), for further processing.

Using the built-in functions filling and area, the gaps
in the “bow tie” are filled and noise (small areas that
fall within the threshold) is removed. The result is
shown in Figure 17(c). Using this image, the centroid
and orientation of the “bow tie” is calculated and
saved. Next, the following frame is analyzed in the
same way.

The colours most suitable for this tracking method
are blue, yellow and red. Green is also usable, al-
though it is found to be quite close to the shade
of blue. Using this method, two targets of the same
colour cannot be tracked at the same time, because
the program will just average the two and place
the centroid between targets. However, for the first
validation of the model, tracking only four targets (the
ship and three floes) suffices.

6.2.4 Method to compare the results to a numerical
simulation

The starting position of all the floes, taken at the time
of first ship contact, is manually converted into a file.
This file type is used as the input for the GPGPU
simulation and contains all the positions and initial
velocities of the bodies (vessel, floes and sides).

The GPGPU simulation processes the input file and
the resulting position and velocities for each floe and
the vessel over time are compared with those from the
experiment, creating a plot with overlaying directions
and velocity profiles. A situation with one floe and
the vessel is shown in Figure 18 and a pack ice
simulation is shown in Figure 19. Both figures display
the position (a), velocity in x-direction (b) and velocity
in y-direction (c). The experimental data contained
some noise, which is filtered by averaging. Also, due
to the resolution of the camera and the thresholding
method, a change in centroid of just a couple of pixels
induces in velocity.

The ship in the experiment is able to sway a lit-
tle, which is visible on the graphs. However, these
disturbances are relatively small compared to the floe
velocities.

Finally, the graphical output of the numerical model
enables the comparison with the experiment data by
placing both videos next to each other, as is shown
for four frames in Figure 20.

(a) t ≈ 4 sec

(b) t ≈ 8 sec

(c) t ≈ 12 sec

(d) t ≈ 25 sec

Fig. 20. Comparison between the numerical simulation
and the experiments of a single case. The bodies in the
numerical model are manually given coloured dots for
convenience.

6.2.5 Validation of the numerical model and recom-
mendations
The model is validated in a qualitative way, visually
comparing the data from the experiment with the
GPGPU simulations. Conclusions can be drawn from
this comparison, because the data sets are obviously
different.

Based on the comparison of four experiments with
only one floe and the vessel and one experiment with
thirty floes and one vessel, the conclusions are as
follows:

1) The hydrodynamics of the floes (water drag,
added mass and wave damping) are insufficient
in the GPGPU model. This shows floes (in open
water, see Fig. 18) loosing little velocity over
time compared to the experiments. Since the
model is used to model pack ice, open water
behaviour is of less importance than collisional
behaviour. However, it does influence the speed
at which the floes collide and thus influences the
“chain of events”.

2) The GPGPU model, in pack ice situations (Figure
19), shows positions and velocities at the early



11

(a) RGB Thresholding (b) Binary Image with noise (c) Final Image

Fig. 17. Three stages of thresholding. First selecting areas based on rgb-colour, converting them to a binary
image and removing the noise.

(a) Position in 2D space (b) Velocity in x-direction

(c) Velocity in y-direction

Fig. 18. Comparison between the numerical model (Num) and experimental data (Exp) of an one ship and one
floe situation.

stage of the simulation which are close to the
experimental values. This leads to the conclusion
that the collisions are modelled quite realisti-
cally. However, over time the average velocity of
the floes in the numerical model is still higher
than the velocity of the floes in the experiment,
due to the low loss of energy in the open water
behaviour.

3) In the experiment, it is noticeable that the surface
tension makes floes stick together, influencing
their motions and speeds. It is clearly seen how

the floes follow a different trajectory in Figure
19(a) and 20. This is not incorporated in the
model (because in large scale, it is neglectable)
but is important in the scale used for the exper-
iments.

7 CONCLUSION

The experiment demonstrated performance benefits
for simulating the complex mechanics of a ship op-
erating in pack ice. It is clear that GPGPU has the



12

(a) Position in 2D space (b) Velocity in x-direction

(c) Velocity in y-direction

Fig. 19. Pack ice comparison, numerical model (Num) and experimental data (Exp).

potential to significantly improve the processing time
of highly data parallel algorithms.

The discussion and results have described a new
class of model that integrates a number of old ideas
into a new capability. The recent developments in
GPU computation have permitted the modeling of a
massive event set in faster than real time, using af-
fordable desktop computer hardware. With demands
for greater safety and greater understanding of ship
and structure operations in polar regions, there is a
need for new simulation tools. The GPU event me-
chanics approach permits the user to model complex
problems in a timely and practical way.

The numerical model shows the general trends
which are also visible in the experimental data. Es-
pecially in the pack ice scenario, it shows realistic
behaviour. However, there are some points where the
model needs improvement, but the data collected in
this research can prove useful when improving the
model. First of all, the open water behaviour of the
numerical model is not accurately predicted, resulting
in an unrealistically high open water velocity of the
floe. Secondly, due to the (small) scale of the exper-
iment, surface tension is an important parameter in

the floe behaviour, while it is not incorporated in the
model. The collisions, however, tend to be modelled
more realistically and follow the general trend seen in
the experiments.

8 FUTURE WORK

While the results so far are promising, we have not yet
to reach the point where the simulation is fast enough
to be practically used for planning ice management
activities in realistic size ice fields. Further develop-
ment and optimization are necessary to achieve this.
One way to achieve a fast enough simulation for a
large ice fields is to implement the simulator using
multiple GPUs.

The numerical model is a work in progress. The
version discussed here tracks a single vessel through a
simple open ice pack and it has the following features:

• Floe edge flexural failure, with new floe creation
• Wind loads on floes
• Current forces on floes
Further enhancements are being planned that will

add:
• Rafting behavior (2.5D)



13

• Floe Splitting
• Simplified Ridging at floe-floe contacts
The above enhancements can be implemented in

the current 2.5D model. To take the technology to
an entirely new level, the modeling will need to be
implemented in a full 3D framework.

With an improved model, an improved method also
needs to be found to validate the model through
model experiments. This should include better con-
trolled ship motions (so that sway and yaw motions
are resisted), a more realistic representation of ice floes
and a more effective quantitative method to compare
the trajectories between the experiments and GPGPU
simulations.

ACKNOWLEDGMENTS

This research has been done under STePS2 project
and was supported by: ABS, Atlantic Canada Op-
portunities Agency, BMT Fleet Technology, Husky Oil
Operations Ltd, Research and Development Council,
Newfoundland and Labrador and Samsung Heavy
Industries.

REFERENCES
[1] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Fi-

nite Element Method: Its Basis and Fundamentals, Sixth Edition,
Butterworth-Heinemann, 6 edition, may 2005.

[2] Stefan Luding, “Introduction to discrete element methods :
basic of contact force models and how to perform the micro-
macro transition to continuum theory,” European Journal of
Environmental and Civil Engineering, vol. 12, no. 7-8, pp. 785–
826, 2008.

[3] David Tskhakaya, “The particle-in-cell method,” in Com-
putational Many-Particle Physics, H. Fehske, R. Schneider, and
A. Weie, Eds., vol. 739 of Lecture Notes in Physics, pp. 161–189.
Springer Berlin Heidelberg, 2008.

[4] Haxon, “Ice floe at oslofjord,” mar 2009,
http://www.panoramio.com/photo/19618780.

[5] Jasmin Blanchette and Mark Summerfield, C++ GUI Program-
ming with Qt 4 (2nd Edition) (Prentice Hall Open Source Software
Development Series), Prentice Hall, 2 edition, Feb. 2008.

[6] Justin Adams, Justin Sheppard, Shadi Alawneh, and D. Pe-
ters, “Ice-floe simulation viewer tool,” in In Proceedings
of Newfoundland Electrical and Computer Engineering Conference
(NECEC 2011), IEEE, St. John’s, NL, Canada, Nov 2011.

[7] Shadi Alawneh and Dennis Peters, “Ice simulation using
gpgpu,” in Proceedings of the 2012 IEEE 14th International
Conference on High Performance Computing and Communication &
2012 IEEE 9th International Conference on Embedded Software and
Systems, Washington, DC, USA, 2012, HPCC ’12, pp. 425–431,
IEEE Computer Society.

[8] Shadi Alawneh, Dennis Peters, and Roelof Dragt, “Ice sim-
ulation using gpgpu,” in The International GPU Technology
Conference (GTC 2013). San Jose, California, Poster.

[9] Roelof Dragt, Stephen Bruneau, and Shadi Alawneh, “Design
and execution of model experiments to validate numerical
modelling of 2d ship operations in pack ice,” in In Proceedings
of Newfoundland Electrical and Computer Engineering Conference
(NECEC 2012), IEEE, St. John’s, NL, Canada, Nov 2012.

[10] Claude Daley, Shadi Alawneh, Dennis Peters, Bruce Quinton,
and Bruce Colbourne, “Gpu modeling of ship operations in
pack ice”, international conference and exhibition on perfor-
mance of ships and structures in ice,” in ICETECH 2012, Banff,
Alberta, Canada, 2012.

[11] Claude Daley, Shadi Alawneh, Dennis Peters, and Bruce Col-
bourne, “Gpu-event-mechanics evaluation of ice impact load
statistics,” in Submitted To Offshore Technology Conference (OTC
2014), Houston, Texas, USA, 2014.

[12] E. Enkvist, P. Varsta, and K. Riska, “The ship-ice interaction,”
in In Proceedings of The International Conference on Port and
Ocean Engineering under Arctic Conditions (POAC.

[13] T.V. Kotras, A.V. Baird, and J.N. Naegle, “Predicting ship
performance in level ice,” SNAME Transactions 91, p. 329349,
1983.

[14] P. Valanto, “The resistance of ships in level ice,” SNAME
Transactions 109, p. 5383, 2001.

[15] G. Lindqvist, “A straightforward method for calculation of
ice resistance of ships,” in In Proceedings of The International
Conference on Port and Ocean Engineering under Arctic Conditions
(POAC), Lule, 1989, vol. 2, p. 722735.

[16] A.J. Keinonen, Browne R.P. Revill, and A. Reynolds, “Ice
breaker characteristics synthesis,” Tech. Rep. TP 12812 E.,
Report of AKAC Inc. to Transportation Development Centre,
1996.

[17] K. Riska, M. Patey, S. Kishi, and K. Kamesaki, “Influence of
ice conditions on ship transit times in ice,” in In Proceedings
of The International Conference on Port and Ocean Engineering
under Arctic Conditions (POAC), Ottawa, Ontario, Canada,
2001, vol. 2, p. 729745.

[18] Raed Lubbad and Sveinung Løset, “A numerical model
for real-time simulation of shipice interaction,” Cold Regions
Science and Technology, vol. 65, no. 2, pp. 111 – 127, 2011.

[19] Peter Kipfer, Mark Segal, and Rüdiger Westermann, “Uber-
Flow: a GPU-based particle engine,” in HWWS ’04: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, New York, NY, USA, 2004, pp. 115–122, ACM.

[20] A. Kolb, L. Latta, and C. Rezk-Salama, “Hardware-based
simulation and collision detection for large particle systems,”
in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware, New York, NY, USA, 2004, HWWS
’04, pp. 123–131, ACM.

[21] Simon Green, “Nvidia particle system sample,” 2004,
http://download.developer.nvidia.com/developer/SDK/.

[22] Yu Popov, O. Faddeyev, D. Kheisin, and A. Yalovlev, “Strength
of ships sailing in ice,” Sudostroenie Publishing House, Leningrad,
1967.

[23] C.G. Daley, “Energy based ice collision forces,” in POAC ’99,
Helsinki, Finland, 1999.

[24] C.G. Daley and A. Kendrick, “Direct design of large ice
class ships with emphasis on the midbody ice belt,” in Proc.
27th Int’l Conf. on Offshore Mechanics and Arctic Engineering
OMAE2008, Estoril, Portugal, 2008.

[25] Nvidia, “Cuda development tools v2.3. getting started,” 2009.
[26] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron,

“Scalable parallel programming with cuda,” Queue, vol. 6, pp.
40–53, March 2008.

[27] David Eberly, “Intersection of convex objects: The method of
separating axes,” Geometric Tools, LL, 2008.

[28] Michael I. Shamos, Computational geometry, PHD thesis, Yale
University, New Haven, 1978.

[29] Joseph O’Rourke, Computational Geometry in C, Cambridge
University Press, New York, NY, USA, 2nd edition, 1998.

[30] Christer Ericson, Real-Time Collision Detection, Morgan Kauf-
mann, 2005.

[31] Nadathur Satish, Mark Harris, and Michael Garland, “De-
signing efficient sorting algorithms for manycore gpus,” in
Proceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing, Washington, DC, USA, 2009, IPDPS
’09, pp. 1–10, IEEE Computer Society.



14

Shadi Alawneh received the B. Eng. de-
gree in computer engineering from Jordan
University of Science and Technology, Irbid,
Jordan in 2008, the M. Eng. and PhD de-
grees in computer engineering from Memo-
rial University of Newfoundland, St. John’s,
NL, Canada in 2010 and 2014, respectively.
Then, he joined the Hardware Acceleration
Lab at IBM Canada as a Staff Software De-
veloper from May 2014 through August 2014.
He is currently a research engineer at Smart

Solutions for Challenging Environments (C-CORE), St. John’s, NL,
Canada. His research interests include parallel and distributed com-
puting, general purpose GPU computing, numerical simulation and
modeling, software optimization and computational geometry. He is
a young professional member of the IEEE.

Roelof Dragt received the BSc. degree in
marine engineering from Delft University of
Technology, Delft, The Netherlands in 2011
and the MSc. Degree in offshore engineering
from Delft University of Technology in 2013.
Since 2013, he is working as Scientist at
TNO (Netherlands Organization for Applied
Scientific Research) within the Structural Dy-
namics department. He conducts both exper-
imental as theoretical research, specializing
in failure mechanisms in the offshore and

maritime environment.

Dennis Peters received the B.Eng. (Elec-
trical) degree at Memorial University from
1984 through 1990. Following this he moved
to Ottawa to work in the high-tech indus-
try with Newbridge Networks (now Alcatel).
After two years in industry he returned to
school, this time at McMaster University in
Hamilton, Ontario where he completed the
M.Eng. (Electrical & Computer) in 1995 and
PhD (Electrical & Computer Engineering) in
2000. He joined the faculty at Memorial in

1998. His teaching is primarily in the area of software, ranging
from introductory programming courses to advanced topics such
as software engineering and concurrent programming. His research
is concerned with developing techniques and tools to facilitate the
production, analysis and use of documentation for computer system
behavioural requirements and design. Such documentation must be
both 1) clear enough to be read and understood, with a minimum of
special training, by both domain experts and programmers, and 2)
complete and precise enough to allow thorough analysis, by manual
or automatic means. He is a senior member of the IEEE.

Claude Daley received the B.Eng. degree
from the University of Western Ontario in
1977 (civil engineering), then he went on to
Princeton University to complete a master’s
degree in structures and mechanics. In 1989,
he was posted to Helsinki in a collaborative
research project between Canada and Fin-
land. During three years in Helsinki, he ob-
tained a doctorate of technology in the area
of ice mechanics and arctic naval architec-
ture. Then, in 1995 he joined Memorial Uni-

versity. His current research focuses on ice mechanics and ice loads
on ships; plastic strength and design of ship structures; concepts for
rational ship structural design regulations; structural risk; and related
matters. He is a member of the ISSC (International Ship Structures
Committee - member of the committee on Condition Assessment
of Aged Ships). He is also currently on the Board of Examiners of
the Professional Engineers and Geoscientists of Newfoundland and
Labrador, on a curriculum committee of the Canadian Council of
Professional Engineers and he serve on the Executive Committee
of the Senate of Memorial University.

Steve Bruneau a graduate of Memorial Uni-
versity’s civil engineering program in 1987,
he worked for a few years in the struc-
tural steel and construction business before
heading to the University of Western On-
tario, Boundary Layer Wind Tunnel. There,
he worked on a few wind related studies
most notable of which are the topsides wind
analysis for the Hibernia Production Platform
and the pedestrian level wind analysis for the
Sears Tower in Chicago. Further studies in

fluids led to an M.E.Sc in Industrial Aeronautics and Hydrodynamics.
In 1992, he returned to Newfoundland to work at C-CORE, immedi-
ately becoming immersed in the ongoing iceberg design load work
for the Terra Nova floating production system. This work prompted
his PhD studies at Memorial University in ice loads, but not long
after startup, ice issues at the Confederation Bridge took center
stage and that ended up being the final theme of his doctoral thesis
in 1996. Subsequent work at C-CORE involved de-icing systems
for microwave antennas and various iceberg engineering and man-
agement undertakings. He joined the Faculty of Engineering and
Applied Science in January 2006 as an assistant professor in civil
engineering and he intend to focus his R&D work in niche areas of
ice, wind, hydro and energy disciplines as they relate to development
in Newfoundland and Labrador.


